Tetrahedron Letters 50 (2009) 284-287

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Acremoxanthones A and B, novel antibiotic polyketides from the fungus *Acremonium* sp. BCC 31806

Masahiko Isaka*, Somporn Palasarn, Patchanee Auncharoen, Somjit Komwijit, E. B. Gareth Jones

National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Klong Luang, Pathumthani 12120, Thailand

ARTICLE INFO

Article history: Received 30 September 2008 Revised 21 October 2008 Accepted 30 October 2008 Available online 5 November 2008

Keywords: Acremonium sp. Acremoxanthone Acremonidin Antimalarial Cytotoxicity

ABSTRACT

Acremoxanthones A and B, novel anthraquinone–xanthone heterodimers with a unique linkage pattern, together with two known compounds, acremonidins A and C, were isolated from the fungus *Acremonium* sp. BCC 31806. The structures of the acremoxanthones were determined by analysis of 2D NMR and mass spectrometric data. Acremoxanthones and acremonidins exhibited antibacterial, antifungal, antiplasmo-dial, and cytotoxic activities.

© 2008 Elsevier Ltd. All rights reserved.

As part of our research program on novel bioactive fungal secondary metabolites, we have investigated the constituents of the fungus *Acremonium* sp. BCC 31806 as the ¹H NMR spectrum of a mycelial extract from this fungus had shown unique resonance patterns.¹ Chemical studies on a large-scale fermentation broth of BCC 31806 afforded two new heterodimers of aromatic polyketides, acremoxanthones A (1) and B (2), along with two known compounds acremonidins A (3) and C (4).^{2,3} Details of the isolation, structure elucidation, and biological activities of these compounds are presented here.

Acremonium sp. BCC 31806 was fermented in potato dextrose broth (PDB; 20×250 mL) at 25 °C for 28 days under static conditions. The MeOH extract (1.31 g) from mycelia was subjected to fractionation using Sephadex LH-20 and silica gel column chromatography, and the eluted fractions containing products were further purified by preparative HPLC using a reverse phase column to furnish **1** (71 mg), **2** (26 mg), **3** (103 mg), and **4** (75 mg).

The molecular formula of acremoxanthone A (1) was determined to be $C_{33}H_{24}O_{11}$ by HRMS (ESI-TOF) and by analysis of ¹H, ¹³C, and DEPT NMR data.⁴ The IR spectrum (KBr) shows intense and broad absorption bands at v_{max} 1731 and 1641 cm⁻¹ and a broad hydroxy absorption at 3425 cm⁻¹. The ¹³C NMR spectrum in CDCl₃ shows 33 resolved peaks. DEPT and HMQC experiments enabled the categorization of these carbons into 19 sp² quaternary carbons, seven sp² methines, one sp³ quaternary carbon (δ_C 41.6),

one oxymethine ($\delta_{\rm C}$ 73.1), one sp³ methine ($\delta_{\rm C}$ 37.6), one methylene (δ_c 35.2), one methoxy group (δ_c 53.2), and two methyl groups ($\delta_{\rm C}$ 22.1 and 21.2). The ¹H NMR spectrum (CDCl₃) displayed four phenolic OH signals at $\delta_{\rm H}$ 14.15 (br), 12.81 (s), 11.62 (s), and 7.72 (br). Analysis of the HMBC data revealed the complete structure of **1** as the heterodimer of an anthraquinone moiety (ABC-ring) and a xanthone moiety (DEF-ring). Thus, the A-ring of the anthraquinone was established from the presence of two meta-coupled methines, H-5 and H-7, and the HMBC correlations from the chelated OH ($\delta_{\rm H}$ 11.62, 8-OH) to C-7, C-8, and C-8a, and from the $\delta_{\rm H}$ 2.40 methyl protons (br s, H-11) to C-5, C-6, and C-7. Weak 4-bond correlations from H-5 and H-7 to the $\delta_{\rm C}$ 186.1 quaternary carbon were observed, hence, this carbon (C-9) should be attached to the quaternary carbon C-8a. The C-ring was composed of a cis-olefin (C-3, C-4) connected to a methine (δ_C 37.6, C-2) and a quaternary carbon ($\delta_{\rm C}$ 41.6, C-4a). These carbons, together with two sp² carbons at $\delta_{\rm C}$ 185.9 (C-1) and $\delta_{\rm C}$ 105.2 (C-9a), formed a six-membered ring. This connectivity was shown by the COSY correlations (H-2-H-3-H-4) and HMBC correlations from H-2 to C-1 and C-9a, from H-3 to C-4a, and from H-4 to C-2, C-4a, and C-9a. The ABCring juncture was confirmed by the HMBC correlations from the oxymethine at $\delta_{\rm H}$ 6.02 (s, H-10) to C-4, C-4a, C-9a, C-10a, C-5, and C-8a. The xanthone structure (DEF-ring) was also deduced from the HMBC correlations. The D-ring portion was assigned from the HMBC correlations from a chelated OH ($\delta_{\rm H}$ 12.81, 1'-OH) to C-1', C-2', and C-9'a, from H-4' to C-2', C-4'a, and C-9'a, and from the non-equivalent methylene protons ($\delta_{\rm H}$ 2.93 and 2.80, H-11') to C-2', C-3', and C-4'. A weak 4-bond HMBC correlation from H-4' to

^{*} Corresponding author. Tel.: +66 25646700x3554; fax: +66 25646707. *E-mail address:* isaka@biotec.or.th (M. Isaka).

^{0040-4039/\$ -} see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.10.146

the $\delta_{\rm C}$ 180.2 quaternary carbon and chelated 1'-OH ($\delta_{\rm H}$ 12.81) indicated the carbonyl linkage at C-9'. The rest of the ¹H and ¹³C NMR signals were assigned to those for the F-ring portion, which consisted of a tetrasubstituted benzene with vicinally coupled methines at $\delta_{\rm H}$ 7.38 (br d, J = 9.1 Hz, H-5') and 7.34 (br d, J = 9.1 Hz, H-6') and substituted with one OH and one methoxycarbonyl group. The molecular formula of 1, established by HRMS, and the upfield ketone carbonyl (C-9', $\delta_{\rm C}$ 180.2) resonance required the tricyclic xanthone structure (DEF-ring). The linkage between the two tricyclic units was addressed also from the HMBC correlations: from H-2 to C-1, C-2, and C-3, from H-10 to C-11', and from H-11' to C-4, C-4a, C-9a, and C-10. Proton H-4 and one of the diastereotopic methylene protons at δ_H 2.93 (H_β-11') show a weak NOESY cross-peak, whilst H-10 exhibited NOESY correlations to both H_{β} -11' and $H_{\alpha}\text{--}11'$ $(\delta_{H}$ 2.80) as well as weak cross-peaks with H-4 and H-5. These data indicated that H-10 and C-11' should be svnfacial.

The molecular formula of acremoxanthone B (**2**)⁵ was determined by HRMS as $C_{33}H_{24}O_{12}$, containing one more oxygen atom than **1**. The ¹H and ¹³C NMR data for **2** were similar, in particular the xanthone moiety, to those of **1**. The major differences were the down-field shifted C-1 (δ_C 205.2) and C-9 (δ_C 195.8) when compared to **1** (δ_C 185.9 and 186.1), and the replacement of the sp² quaternary carbon at δ_C 105.2 (C-9a) of **1** by a tertiary alcohol (δ_C

82.2). The chelated phenolic proton, 9-OH ($\delta_{\rm H}$ 14.15, br s) for 1, was absent in **2**. Instead, an OH resonated at $\delta_{\rm H}$ 7.69 (9a-OH), which exhibited HMBC correlations to C-4a and C-9a ($\delta_{\rm C}$ 82.2). Detailed analysis of the 2D NMR data, in particular HMBC correlations (Table 1), revealed that the xanthone part of the molecule was identical to 1. Therefore, acremoxanthone B (2) is the C-9a oxygenated derivative of 1. The relative configuration of 2 was addressed by analysis of NOESY data (DMSO- d_6). Proton H-4' showed NOESY correlations to H_{α} -11' (δ_{H} 3.34) and H_{β} -11' (δ_{H} 3.19) with slightly higher cross-peak intensity for the former, while H-10 showed a correlation to H_{α} -11' with a higher intensity than that to H_{β} -11'. Proton H-10 did not show clear NOESY correlations to H-5 or H-4. These data strongly suggested a pseudoaxial orientation of H-10. Unfortunately, there was no NOESY cross-peak from 9a-OH (br s) to any CH or CH₂ group. The NOESY spectrum acquired in acetone- d_6 also provided similar information. However, examination of a molecular model of both the $9a-\alpha$ -OH and $9a-\beta$ -OH isomers demonstrated that only isomer $9a-\alpha$ -OH is consistent with the above-mentioned NOESY data. In the $9a-\alpha$ -OH isomer, 9a-OH and H-10 occupy pseudoaxial positions (Fig. 1). In contrast, the 9a-β-OH configuration required pseudoequatorial orientation of H-10.

The structures of compounds **3** and **4** were elucidated on the basis of HRMS and 2D NMR data.^{6,7} The ¹H and ¹³C NMR spectral data for these isolated compounds in DMSO- d_6 were identical to those of acremonidins A and C, respectively.² Acremonidins A–E were previously isolated from *Acremonium* sp. *LL*-Cyan 416. In the original report,² the relative configuration of C-2, C-4a, and C-10 for acremonidins A and C was proposed as shown in the structures **3** and **4**, respectively, whereas the configuration of the additional chiral carbon center, C-9a, in **4** was not presented. Since the ¹H and ¹³C NMR data for the ABC-ring moiety are very close between acremoxanthone B (**2**) and acremonidin C (**4**) (in DMSO- d_6), and considering also their co-occurrence in BCC 31806, we propose that these compounds possess the same stereochemistry at C-9a.

A unique structural feature of acremoxanthones is the linkage pattern of two tricyclic units. Ring junctions similar to those of acremoxanthones/acremonidins are shown only in xanthoquinodins (anticoccidial antibiotics from *Humicola* sp. FO-888),⁸ beticolins/cebetins (yellow toxins produced by *Cercospora beticola*),^{9,10} and chaetomanone (from *Chaetomium globosum* KMITL-N0802).¹¹ Similar to the biosynthesis of xanthoquinodins,^{8b} acremoxanthones are probably formed via coupling between the xanthone (elminthosporin) and the xanthone (pinselin) moieties.¹² Xanthone and benzophenone monomers, such as those corresponding, respectively, to acremoxanthones and acremonidins, are known to be produced by oxidative cleavage of common anthraquinones.^{8b,12,13}

Compounds 1-4 were subjected to in vitro biological assays: antibacterial (Staphylococcus aureus, Bacilus cereus, Pseudomonas aeruginosa, and Escherichia coli),14 antifungal (Candida albicans, Magnaporthe grisea),¹⁴ antimycobacterial (Mycobacterium tuberculosis H37Ra), and antiplasmodial (Plasmodium falciparum K1)¹⁵ activities, and cytotoxicity to three cancer cell-lines (KB, BC, and NCI-H187)¹⁴ and non-cancerous Vero cells. Table 2 shows selected data. Compounds 1-4 exhibited moderate antibacterial activity against S. aureus and B. cereus, but they were inactive against P. aeruginosa and E. coli. Only acremoxanthone A (1) displayed significant activity against C. albicans (IC₅₀ 1.7 μ g/mL), while all the compounds were inactive against the plant pathogenic fungus M. grisea. All these compounds lacked antituberculosis activity; however, the antimalarial activity of 2 and 4 should be noted. Whereas compounds 1-4 exhibited significant antibiotic activities, they also showed cytotoxicity to all tested cell-lines. Acremonidins A (3) and B (deacetyl analogue of **3**) are known to show moderate activity against Gram-positive bacteria, including the methicillin-resistant staphylococci and vancomycin-resistant enterococci.²

able 1	
IMR data for acremoxanthones A (1) and B (2) (500 MHz for 1 H, and 125 MHz for 13 C))

Position	1 (in CDCl ₃)			2 (in DMSO- <i>d</i> ₆)			
	$\delta_{\rm C}$ mult.	$\delta_{\rm H}$ mult. (J in Hz)	НМВС	$\delta_{\rm C}$ mult.	$\delta_{\rm H}$ mult. (J in Hz)	HMBC	
1	185.9 qC			205.2 qC			
2	37.6 CH	4.94 dd (6.6, 0.6)	1,3,4,9a,1',2',3'	44.0 CH	4.69 d (6.1)	1,3,4,9a,1',2',3'	
3	131.9 CH	6.49 dd (8.4, 6.7)	2,4,4a,5	134.9 CH	6.54 dd (9.1, 6.6)	1,2,4a	
4	132.5 CH	6.13 dd (8.4, 0.6)	2,3,4a,9a,10	129.6 CH	5.84 d (9.1)	2,4a,9a,10,	
4a	41.6 gC			47.2 qC			
5	123.2 CH	6.93 br s	6,7,8a,9,10,10a,11	118.8 CH	6.65 br s	7,8a,10,11	
6	147.8 gC			150.0 gC			
7	119.4 CH	6.82 br s	5.8.8a.9.11	117.9 CH	6.84 brs	5.8a.11	
8	161.8 aC			163.2 gC		.,,	
8-0H	1	11.62 s	7.8.8a		11.40 s	7.8.8a	
8a	112.7 aC			110.4 aC			
9	186.1 gC			195.8 gC			
- 9-0H		14.15 br s					
9a	105.2 aC			82.2 aC			
9a-0H	room qe			on de	7 69 s	4a 9a	
10	73 1 CH	6.02 s	4 4a 5 8a 10a 12 11′	70 5 CH	6 33 br s	4 4a 10a 12 11'	
10a	136.5 aC	0102 0	1, 14,0,04,104,12,11	140.0 aC	0.00 01 0	1, 14,104,12,11	
11	22.1 CH ₂	2 40 s	567	22.4 CH ₂	2 37 br s	567	
12	170.6 aC	2110 0	51017	171.5 aC		5, 6, 7	
13	21.2 CH ₂	2 03 s	12	21 4 CH ₂	2 38 s	12	
1/	157.8 aC	2.03 3	12	156.7 aC	2.50 5	12	
1′-ОН	157.0 qe	12.81 s	1' 2' 9' 2	150.7 qe	12.83 s	1' 2' 9' 3	
2'	117.4 aC	12.01 3	1,2,3 u	118.4 aC	12.05 5	1,2,5 u	
3/	146.4 gC			147.1 aC			
<u>4</u> ′	109.8 CH	6 47 br s	2' 4'a 9' 9'a 11'	1099 CH	6 99 s	2' 4'a 9'a 11'	
4'a	154.0 aC	0.17 51 5	2,10,5,50,11	154.3 aC	0.55 5	2,10,00,11	
5/	122.0 CH	7.38 br d(9.1)	7/ 8/3 10/3	120.6 CH	7.61 d (9.2)	7/8/2	
5 6'	125.7 CH	7.36 br d (9.1)	8/ 10/a	126.0 CH	7.61 d (9.2)	8/ 10/ a	
0 7'	152 3 ^a aC	7.54 bi d (5.1)	0,104	151.3° aC	7.40 u (5.2)	0,10 a	
, 7′-0H	152.5 qc	7 72 br s		151.5 qc	10.53 br s		
8'	114.2 aC	7.72 01 3		117 50 ^b aC	10.55 01 5		
8/a	118.4 aC			117.50 qC			
0 a 0/	180.2 dC			180.0 aC			
9 9/1	100.2 qC			106.2 qC			
5 a 10/ 2	150.6ª aC			$140.4^{\circ} aC$			
10 d 11/	25.2 CU	202 d(177)	4 42 02 10 2/ 4/	145.4 qC	224 d (102)	1 1 2 1 1	
11	55.2 CH ₂	2.95 u(17.7)	4,44,94,10,2,4	52.5 CH2	2.34 u (19.2)	4,4d,5,4	
10/	160.0 cC	2.00 u (17.7)	4,4d,9d,10,2 ,3 ,4	167.1 cC	3.19 u (19.2)	4d,9d,2 ,5	
12	109.0 qC	4.01 c	12/	107.1 qC	2.95 a	12/	
15	ЭЭ.2 CП3	4.01 5	12	52.7 CH ₃	2.02.5	12	

^{a-c} Assignment of carbons can be interchanged.

Figure 1. Probable stereo structure of acremoxanthone B (2).

Table	2

Biological activities of compounds 1-4

Compound	S. aureus ^a	B. cereus ^a	C. albicans ^b	P. falciparum ^c		Cytotoxicity (IC ₅₀ , µg/mL) ^d			
	(MIC, µg/mL)	(MIC, µg/mL)	(IC ₅₀ , μg/mL)	(IC ₅₀ , μg/mL)	KB	BC	NCI-H187	Vero	
1	12.5	>100	1.7	>10	3.3	1.1	0.87	1.2	
2	6.25	6.25	>50	3.0	18	9.4	14	12	
3	3.13	1.56	>50	5.4	13	5.0	4.5	6.6	
4	3.13	3.13	>50	>10	>20	9.3	16	23	

^a Antibacterial activity against Staphylococcus aureus and Bacillus cereus was evaluated using the resazurin microplate assay (REMA). MIC values of a standard antibacterial ^b Antifungal activity against *Candida albicans*. Standard compound, amphotericin B, showed an IC₅₀ value of 0.047 µg/mL.
^c Antimalarial activity against *Plasmodium falciparum* K1. Standard antimalarial drug, dihydroartemisinin, showed an IC₅₀ value of 0.0011 µg/mL.
^d The IC₅₀ values of a standard compound, ellipticine, against KB, BC, NCI-H187 and Vero cells were 0.27, 0.21, 0.15 and 0.60 µg/mL, respectively.

References and notes

- 1. This fungus was isolated from indoor air at BIOTEC, Thailand, and is deposited at the BIOTEC Culture Collection as BCC 31806.
- 2. He, H.; Bigelis, R.; Solum, E. H.; Greenstein, M.; Carter, G. T. J. Antibiot. 2003, 56, 923-930.
- Bigelis, R.; He, H.; Yang, H. Y.; Chang, L.-P.; Greenstein, M. J. Ind. Microbiol. Biotechnol. 2006, 33, 815–826.
- 4. Acremoxanthone A (1): Yellow powder; $[\alpha]_{26}^{26}$ +649 (c 0.20, CHCl₃); UV (MeOH) λ_{max} (log ε) 211 (4.26), 245 (4.46), 273 (4.47), 330 (4.18), 366 (4.37) nm; IR (KBr) v_{max} 3425, 1731, 1641, 1612, 1577, 1220, 1015 cm⁻¹; HRMS (ESI-TOF) m/z 595.1277 [M–H]⁻ (calcd for C₃₃H₂₃O₁₁, 595.1246); ¹H and ¹³C NMR data in CDCl₃, Table 1.
- 5. Acremoxanthone B (2): Yellow powder; $[\alpha]_D^{27}$ +52 (*c* 0.10, CHCl₃); UV (MeOH) λ_{max} (log ε) 216 (4.12), 241 (4.21), 275 (4.45), 302 (sh) (4.00), 397 (sh) (3.59) nm; IR (KBr) ν_{max} 3443, 1737, 1639, 1433, 1233, 1211 cm⁻¹; HRMS (ESI-TOF) m/z 635.1175 [M+Na]⁺ (calcd for C₃₃H₂₄O₁₂Na, 635.1160); ¹H and ¹³C NMR data in DMSO-d₆), Table 1.
- 6. Acremonitian A (3): Yellow powder; $[\alpha]_D^{26}$ +422 (*c* 0.20, CHCl₃); UV (MeOH) λ_{max} (log ε) 208 (4.04), 241 (4.23), 276 (4.15), 290 (sh) (4.11), 362 (4.29) nm; IR (KBr) ν_{max} 3426, 3204, 1731, 1681, 1614, 1462, 1217 cm⁻¹; HRMS (ESI-TOF) *m/z* 637.1311 [M+Na][†] (calcd for C₃₃H₂₆O₁₂Na, 637.1316); ¹H and ¹³C NMR spectral data in DMSO-*d*₆ were identical to those reported in the literature.
- data in DMSO- d_6 were identical to those reported in the literature. 7. Acremonidin C (**4**): Yellow powder; $[\alpha]_{2}^{26} - 20 (c 0.10, CHCl_3); UV (MeOH) \lambda_{max}$ (log ε) 212 (4.17), 241 (4.33), 278 (4.43), 349 (4.18) nm; IR (KBr) v_{max} 3426,

3208, 1736, 1680, 1624, 1207 cm⁻¹; HRMS (ESI-TOF) m/z 629.1318 [M–H]⁻ (calcd for $C_{33}H_{25}O_{13}$, 629.1301); ¹H and ¹³C NMR spectral data in DMSO- d_6 were identical to those reported in the literature.

- (a) Tabata, N.; Suzumura, Y.; Tomoda, H.; Masuma, R.; Haneda, K.; Kishi, M.; Iwai, Y.; Ōmura, S. J. Antibiot. **1993**, 46, 749–755; (b) Tabata, N.; Tomoda, H.; Matsuzaki, K.; Ōmura, S. J. Am. Chem. Soc. **1993**, 115, 8558–8564; (c) Matsuzaki, K.; Tabata, N.; Tomoda, H.; Iwai, Y.; Tanaka, H.; Ōmura, S. Tetrahedron Lett. **1993**, 34, 8251–8254; (d) Tabata, N.; Tomoda, H.; Iwai, Y.; Ōmura, S. J. Antibiot. **1996**, 49, 267–271.
- (a) Milat, M.-L.; Prange, T.; Ducrot, P.-H.; Tabet, J.-C.; Einhorn, J.; Blein, J.-P.; Lallemand, J.-Y. J. Am. Chem. Soc. **1992**, 114, 1478–1479; (b) Milat, M.-L.; Blein, J.-P.; Einhorn, J.; Tabet, J.-C.; Ducort, P.-H.; Lallemand, J.-Y. Tetrahedron Lett. **1993**, 34, 1483–1486; (c) Ducrot, P.-H.; Lallemand, J.-Y.; Milat, M.-L.; Blein, J.-P. Tetrahedron Lett. **1994**, 35, 8797–8800.
- 10. Jalal, M. A. F.; Hossain, M. B.; Robeson, D. J.; van der Helm, D. J. Am. Chem. Soc. 1992, 114, 5967–5971.
- Kanokmedhakul, S.; Kanokmedhakul, K.; Phonkerd, N.; Soytong, K.; Kongsaeree, P.; Suksamrarn, A. Planta Med. 2002, 68, 834–836.
- 12. Rawlings, B. J. Nat. Prod. Rep. 1997, 14, 523-556.
- Turner, W. B.; Aldridge, D. C. Fungal Metabolites II; Academic Press: London, 1993; Chapter 5, pp 55–223.
- 14. O'Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Eur. J. Biochem. 2000, 267, 5421–5426.
- Desjardins, R. E.; Canfield, C. J.; Chulay, J. D. Antimicrob. Agents Chemother. 1979, 16, 710–718.